Sequences and Series

LEARNING OBJECTIVES

In this chapter, you learn how to use GC to

- Generate a sequence using seq ().
- ⇒ Find the Sum of a Sequence using sum () or cumSum ().
- ⇒ Find the Sum to Infinity of a GP.
- ⇒ Find the nth term of a Recurring Sequence using SEQ mode.
- Solve Quadratic Equation using PlySmlt2 application.
- **⇒** Evaluate ∑
- ⇒ Find the Root(s) of an Equation under GRAPH mode.
- Determine the Behaviour of a Sequence.

Example 4.1

A geometric series has common ratio r, and an arithmetic series has first term a and common difference d, where a and d are non-zero. The first three terms of the geometric series are equal to the first, sixth and tenth terms respectively of the arithmetic series.

- (i) Show that $5r^2 9r + 4 = 0$.
- (ii) Deduce that the geometric series is convergent and find, in terms of a, the sum to infinity.
- (iii) The sum of the first n terms of the geometric series is denoted by S. Given that a > 0, find the least value of n for which S exceeds 99% of the sum to infinity.

SOLUTION

(i)
$$r = \frac{a + (6-1)d}{a} = \frac{a + (10-1)d}{a + (6-1)d}$$

$$r = 1 + 5\left(\frac{d}{a}\right) = \frac{1 + 9\left(\frac{d}{a}\right)}{1 + 5\left(\frac{d}{a}\right)}$$

$$r = 1 + 5\left(\frac{d}{a}\right) = \frac{1 + 9\left(\frac{d}{a}\right)}{1 + 5\left(\frac{d}{a}\right)}$$
If $x, y \text{ and } z \text{ are in G.P.,}$

$$\frac{y}{x} = \frac{z}{y} = r$$

$$\therefore \frac{d}{a} = \frac{r-1}{5} \Rightarrow r = \frac{1+9\left(\frac{r-1}{5}\right)}{1+5\left(\frac{r-1}{5}\right)} \Rightarrow r^2 = 1+9\left(\frac{r-1}{5}\right) \Rightarrow 5r^2 = 5+9r-9$$

$$\Rightarrow 5r^2 - 9r + 4 = 0$$
 (shown)

(ii)
$$5r^2 - 9r + 4 = 0 \implies (r - 1)(5r - 4) = 0 \implies r = 1 \text{ or } r = \frac{4}{5}$$

Since $d \neq 0$, the three terms of GP are not the same, thus $r \neq 1$.

Hence, $r = \frac{4}{5} \Rightarrow$ Since |r| < 1, the geometric series is convergent.

And the sum to infinity = $\frac{a}{1 - \frac{4}{a}} = 5a$.

(iii)
$$S_n > 0.99S_{\infty}$$

$$\frac{a(1-0.8^n)}{1-0.8} > 0.99 \frac{a}{1-0.8}$$

$$1-0.8^n > 0.99$$

$$0.8^n < 0.01$$

$$n \lg 0.8 < \lg 0.01$$

$$n > \frac{\lg 0.01}{\lg 0.8}$$

$$n > 20.6$$

Hence, the least value of n is 21.

(You may use GC to verify your answer.)

	L1	L2	163 3	Go up to the title L3.		
[Type in the expression as	HAMFINGS	.8 .64 .512 .4096 .32768 .26214 .20972		Generate a list of cumulative values of L2		
shown.]	L3 = GUI	mSum (I	LZ	under L3.		
	L3 =cumSum(L2 NAMES DBE MATH 1:SortA(2:SortD(3:dim(4:Fill(5:seq(3: CumSum(7\DList(For cumSum, press [2nd]STAT] [6], i.e. LIST, OPS, cumSum(. Note that the syntax of cumSum is cumSum (LIST).		
until a	L1	L2	L3 3			
value $> 4 \times 0.99$,						
1	15 16	.0351 8 .02 81 5	3.8593 3.8874			
i.e. 3.96, is	17	.02252	3:9099			
reached.	18 19 20 21	.01801 .01441 .01153 .00922	3.9279 3.9424 3.9539 88358	∴ We obtain the least		
	L3(21) = 3	3.963	10651	\therefore we obtain the least value of n is 21. \square		
				. 3200 02 // 20 21, 2		

Example 4.2

- (i) Patrick saves \$20 on 1 January 2008. On the first day of each subsequent month he saves \$4 more than in the previous month, so that he saves \$24 on 1 February 2008, \$28 on 1 March 2009, and so on. On what date will he first have saved over \$5000 in total?
- (ii) Kenny puts \$20 on 1 January 2008 into a bank account which pays compound interest at a rate of 3% per month on the last day of each month. He puts a further \$20 into the account on the first day of each subsequent month.
 - (a) How much compound interest has his original \$20 earned at the end of 3 years?
 - (b) How much in total, correct to the nearest dollar, is in the account at the end of 3 years?
 - (c) After how many complete months will the total in the account first exceed \$5000?

SOLUTION

(i) $T_1 = 20$, d = 4

$$\frac{n}{2} [2(20) + 4(n-1)] > 5000 \Rightarrow n^2 + 9n - 2500 > 0 \Rightarrow n < -54.7 \text{ or } n > 45.7$$

:. Hence, Patrick will first have saved over \$5000 in total on 1 October 2011. (You may use GC to find the roots.)

- (ii) (a) The required compound interest = $20(1.03)^{36} 20 = 38.0 (3 s.f.)
 - (b) The required amount = $20(1.03) + 20(1.03)^2 + ... + 20(1.03)^{36}$

$$=\frac{20(1.03)\left[(1.03)^{36}-1\right]}{1.03-1}$$

=\$1303

(You may use GC to verify your answer.)

(c)
$$20(1.03) + 20(1.03)^2 + ... + 20(1.03)^n > 5000$$

$$\frac{20(1.03)(1.03^n - 1)}{1.03 - 1} > 5000$$

$$1.03^n > 8.282$$

$$n > \frac{\lg 8.282}{\lg 1.03}$$

$$n > 71.5$$

The amount will first exceed \$5000 after 72 months.

(You may use GC to verify your answer.)

Example 4.3

A sequence u_1, u_2, u_3, \dots is such that $u_1 = 1$ and

$$u_{n+1} = u_n - \frac{3n^2 + 3n + 1}{n^3(n+1)^3}$$
, for all $n \ge 1$.

- (i) Use the method of mathematical induction to prove that $u_n = \frac{1}{n^3}$.
- (ii) Hence find $\sum_{n=1}^{N} \frac{3n^2 + 3n + 1}{n^3(n+1)^3}$.
- (iii) Give a reason why the series in part (ii) is convergent and state the sum to infinity.
- (iv) Use your answer to part (ii) to find $\sum_{n=3}^{N} \frac{3n^2 3n + 1}{n^3(n-1)^3}$.

SOLUTION

(i) Let P_n be the statement $u_n = \frac{1}{n^3}$ where $u_{n+1} = u_n - \frac{3n^2 + 3n + 1}{n^3(n+1)^3}$ and $u_1 = 1$ for $n \in \mathbb{Z}^+$.

When n = 1, L.H.S. $= u_1 = 1$; R.H.S. $= \frac{1}{1^2} = 1$.

 \therefore L.H.S. = R.H.S.

 \therefore P₁ is true.

Assume P_k is true for some $k \in \mathbb{Z}^+$, i.e. $u_k = \frac{1}{k^3}$.

To prove P_{k+1} is true, i.e. $u_{k+1} = \frac{1}{(k+1)^3}$

L.H.S. =
$$u_{k+1} = u_k - \frac{3k^2 + 3k + 1}{k^3(k+1)^3}$$

= $\frac{1}{k^3} - \frac{3k^2 + 3k + 1}{k^3(k+1)^3}$
= $\frac{(k+1)^3 - 3k^2 - 3k - 1}{k^3(k+1)^3}$
= $\frac{k^3 + 3k^2 + 3k + 1 - 3k^2 - 3k - 1}{k^3(k+1)^3}$
= $\frac{1}{(k+1)^3}$
= R.H.S.

 \therefore P_{k+1} is true whenever P_k is true.

Since P_1 is true and $P_k \Rightarrow P_{k+1}$ is true by Mathematical Induction, P_n is true for all $n \in \mathbb{Z}^+$.

(ii)
$$\sum_{n=1}^{N} \frac{3n^2 + 3n + 1}{n^3(n+1)^3} = \sum_{n=1}^{N} (u_n - u_{n+1})$$
$$= u_1 - u_2$$
$$+ u_2 - u_3$$
$$... + u_{N-1} - u_N$$
$$+ u_N - u_{N+1}$$
$$= u_1 - u_{N+1}$$
$$= 1 - \frac{1}{(N+1)^3}$$

(You may use GC to verify your answer.)

STAT 1	E 1	LZ	L3 1	Select STAT, EDIT,
A				Edit. Go up to the title L1.
				Go up to the title L1.
[Type in the				Generate a list of
expression as			4	integers from 1 to 8 under L1.
shown.]	L1 =se			
	L1	102	L3 2	Go up to the title L2.
Type in	1234567			
L2	ğ			Generate a list of
$=\frac{3L_1^2+3L_1+1}{L_1^3(L1+L)^3}.$	6			values based on the given formula under
$L_1^3(L1+L)^3$		<u>.</u> 3(L1+	10^30	L2.
	L1	L2	1 3	Go up to the title Lz.
	<u> </u>	.875	44 3	Go up to the title 13.
	2	.08796 .02141		
	<u>4</u>	.00763 .00337		
[Type in the expression as	1234567	00171 9.6E-4		Generate a list of cumulative values of
shown.]		mSum(Lz	L2 under L3.
until	L1	L2	L3 3	
L1=8 is		.08796	.96296	
reached.	3	.02141	.98438 .992	
	2345678	.00337 .00171	.99537 .9970B	
	7 8	9.6E-4 5.8E-4	.99805 #333558	
	L3(B) =	. 9986	28257	
2nd)[MODE]	1-1/9	^3		Evaluate the answer
		. 9986:	282579	in part (ii) when $N=8$.
				Note that the 2
				values are the same.
				Hence, the expression obtained in part (ii) is
				verified. 🗹

(iii) When
$$N \to \infty$$
, $\frac{1}{(N+1)^3} \to 0 \Rightarrow 1 - \frac{1}{(N+1)^3} \to 1 \Rightarrow \sum_{n=1}^{N} \frac{3n^2 + 3n + 1}{n^3(n+1)^3} \to 1$

Hence, the series in part (ii) is convergent and the sum to infinity is 1.

(iv)
$$\sum_{n=2}^{N} \frac{3n^2 - 3n + 1}{n^3 (n-1)^3} = \sum_{r=1}^{N-1} \frac{3(r+1)^2 - 3(r+1) + 1}{(r+1)^3 r^3} \text{ when } n = r+1$$

$$= \sum_{r=1}^{N-1} \frac{3(r+1)^2 - 3(r+1) + 1}{r^3 (r+1)^3}$$

$$= \sum_{r=1}^{N-1} \frac{3r^2 + 6r + 3 - 3r - 3 + 1}{r^3 (r+1)^3}$$

$$= \sum_{r=1}^{N-1} \frac{3r^2 + 3r + 1}{r^3 (r+1)^3}$$

$$= 1 - \frac{1}{(N-1+1)^3}$$

$$= 1 - \frac{1}{N^3}$$

(You may use GC again to verify your answer.)

[Apply similar	L1	42	L3 2	Note that L1 now
keystrokes	2			starts from 2.
shown in part (ii).]	234567			
(11).]	è			
	á			
	L2 =^:	3(L1-	1)^3)	
		li s	MIN A	
	L1	L2	18 3	
	2	.875		
	Š	.08796 .02141		
	234567	.00763		
	6	.00337		
	Á	9.6E-4		
	L3 =cui	mSum(l	_2	

40

L1	L2	L3 3	
2 3 4 5 6 7 8 L3(7) =	.875 .08796 .02141 .00763 .00337 .00171 9.66-4	.875 .96296 .98438 .992 .99537 .99708 ##:03	
1-1/8	^3 .9981	946875	Evaluate the answer in part (ii) when $N=8$. Note that the 2 values are the same. Hence, the expression obtained in part (ii) is verified. \square

Example 4.4

The diagram shows the graph of $y = 2x - e^{\frac{x}{2}}$. The two roots of the equation are denoted by α and β . where $\alpha < \beta$.

(i) Find the values of α and β , each correct to 3 decimal places.

A sequence of real numbers x_1, x_2, x_3, \dots satisfies the recurrence relation

$$x_{n+1} = \frac{1}{2}e^{\frac{x_n}{2}}$$

for $n \ge 1$.

- (ii) Prove algebraically that, if the sequence converges, then it converges to either α or β .
- (iii) Use a calculator to determine the behaviours of the sequence for each of the cases $x_1 = 0$, $x_1 = 3$, $x_1 = 6$.
- (iv) By considering $x_{n+1} x_n$, prove that

$$x_{n+1} < x_n \text{ if } \alpha < x_n < \beta,$$

 $x_{n+1} > x_n \text{ if } x_n < \alpha \text{ or } x_n > \beta$

(v) State briefly how the results in part (iv) relate to the behaviours determined in part (iii).

SOLUTION

(i) From GC, $\alpha = 0.715$ and $\beta = 4.307$.

(ii)
$$x_{n+1} = \frac{1}{2}e^{\frac{x_n}{2}}$$

$$\Rightarrow 2x_{n+1} = e^{\frac{x_n}{2}}$$

$$\Rightarrow 2x_{n+1} - e^{\frac{x_n}{2}} = 0$$

$$\Rightarrow 2L - e^{\frac{L}{2}} = 0 \quad \text{given that } x_n \to L \text{ and } x_{n+1} \to L \text{ when } n \to \infty.$$

Since α and β are the roots of $2x - e^{\frac{x}{2}} = 0$, hence x_n converges to α or β if the sequence converges.

44

)	n	น(ท)	
[Observe the change in u_n .]	14 15 16 17 18 19 80 0=20	.71481 .71481 .71481 .71481 .71481 .71481 .71481	Note that the sequence converges to 0.71481 which is α when $x_1 = 0$. \square

Repeat the same process for the cases $x_1 = 3$ and $x_1 = 6$.

$$\begin{aligned} \text{(iv)} \quad & x_{n+1} - x_n = \frac{1}{2} e^{\frac{x_n}{2}} - x_n = \frac{1}{2} e^{\frac{x_n}{2}} - x_n = -\frac{1}{2} (2x_n - e^{\frac{x_n}{2}}) \\ \text{If } & \alpha < x_n < \beta, \ 2x_n - e^{\frac{x_n}{2}} > 0 \Rightarrow -\frac{1}{2} (2x_n - e^{\frac{x_n}{2}}) < 0 \Rightarrow x_{n+1} - x_n < 0 \Rightarrow x_{n+1} < x_n. \\ \text{If } & x_n < \alpha \text{ or } x_n > \beta, \ 2x_n - e^{\frac{x_n}{2}} < 0 \Rightarrow -\frac{1}{2} (2x_n - e^{\frac{x_n}{2}}) > 0 \Rightarrow x_{n+1} - x_n > 0 \Rightarrow x_{n+1} > x_n. \end{aligned}$$

(v) For $x_1 = 0$ where $x_1 < \alpha \Rightarrow x_{n+1} = \frac{1}{2}e^{\frac{x_n}{2}} - x_n < \frac{1}{2}e^{\frac{\alpha}{2}} = \alpha$, hence $x_1 < x_2 < x_3 < ... < \alpha$. For $x_1 = 3$ where $\alpha < x_1 < \beta \Rightarrow x_n > x_{n+1} = \frac{1}{2}e^{\frac{x_n}{2}} > \frac{1}{2}e^{\frac{\alpha}{2}} = \alpha$, hence $x_1 > x_2 > x_3 > ... > \alpha$. If $x_1 = 6$ where $x_1 > \beta \Rightarrow x_n < x_{n+1}$, hence $\beta < x_1 < x_2 < x_3 < ...$

46

Checklist GC Techniques covered in this chapter							
TECHNIQUES	4.1	4.2	4.3	4.4			
Generate a sequence using seq () .	\checkmark		\checkmark				
Find the Sum of a Sequence using sum () or cumSum () .			$\overline{\checkmark}$				
Find the Sum to Infinity of a GP .	\checkmark						
Find the nth term of a Recurring Sequence using SEQ mode.		\checkmark					
Solve Quadratic Equation using PlySmlt2 application.		\checkmark					
Evaluate Σ .			V				
Find the Root(s) of an Equation under GRAPH mode.				\checkmark			
Determine the Behaviour of a Sequence .				V			